
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 00, NO. 0, OCTOBER 2023 13

SUPPLIMENTARY MATERIALS

COMPUTATIONAL COMPLEXITY ANALYSIS

In this paper, the computational complexity is defined as
the number of complex addition (CC [A]) and multiplica-
tion (CC [M ]) required to calculate the phase and channel
information at each symbol. Moreover, the computational
complexity of one complex division is defined as one complex
multiplication due to their similar computational complexity.
Furthermore, we assume that the complex exponential func-
tions and the square root operations are implemented by means
of a lookup table.

The channel amplitude estimation is calculated by (5), (7),
and (8). Therefore, the computational complexity for a symbol
can be calculated by

CC
[M]

|Ĥ| = NrN
2
t

/
Lc︸ ︷︷ ︸

(5)

+NrNt/Lc︸ ︷︷ ︸
(7)

, (36)

CC
[A]

|Ĥ| = NrNt (Nt − 1)/Lc︸ ︷︷ ︸
(5)

+NrNt/Lc +NrNt/Lf︸ ︷︷ ︸
(7)

.

(37)
The WLLS one-shot estimation is calculated by (9), (10),

(18)-(20). However, (9) can use the intermediate result of
YiS

H
i in (5). Therefore, the computational complexity for a

symbol has the form of

CC
[M]
WLLS = NrNt/Lc︸ ︷︷ ︸

(18)

+(Nr +Nt − 1)NrNt/Lf︸ ︷︷ ︸
(19)

+NrNt(Nr +Nt − 1)
2
/
Lf︸ ︷︷ ︸

(20)

+NrNt (Nr +Nt − 1)/Lc︸ ︷︷ ︸
(20)

,

(38)

CC
[A]
WLLS = NrNt(Nr +Nt − 1)

2
/
Lf︸ ︷︷ ︸

(20)

+ (NrNt − 1) (Nr +Nt − 1)/Lc︸ ︷︷ ︸
(20)

.
(39)

The Wiener estimation is calculated by (23)-(29). However,
(24) and (29) are constants. Therefore, the computational
complexity for a symbol is

CC
[M]
Wiener = (Nr +Nt − 1)NrNt/Lf︸ ︷︷ ︸

(23)

+ (2LW + 1) (Nr +Nt − 1)/Lc︸ ︷︷ ︸
(25)

+
[
(2LW + 1)

3
+ (2LW + 1)

]/
Lf︸ ︷︷ ︸

(26)

+2LW /Lf︸ ︷︷ ︸
(28)

,

(40)

CC
[A]
Wiener = (Nr +Nt − 1) (NrNt − 1)/Lf︸ ︷︷ ︸

(23)

+ 2LW (Nr +Nt − 1)/Lc︸ ︷︷ ︸
(25)

+ [(2LW + 1) · 2LW + 2LW ]/Lf︸ ︷︷ ︸
(26)

+2LW /Lf︸ ︷︷ ︸
(27)

.

(41)
The phase recovery and channel estimation is calculated by

(30)-(33). Again, YiS
H
i in (30) can use the intermediate result

of (5). Therefore, the computational complexity for a symbol
can be represented as

CC
[M]

Ĥ
= (2NrNt −Nr)/Lc︸ ︷︷ ︸

(30)

+(Nr +Nt − 1)Ld/Lc︸ ︷︷ ︸
(32)

+ (2NrNt −Nr)Ld/Lc︸ ︷︷ ︸
(33)

,
(42)

CC
[A]

Ĥ
= NrNt/Lc︸ ︷︷ ︸

(31)

+(Nr +Nt − 1) (1 + 2Ld)/Lc︸ ︷︷ ︸
(32)

. (43)

Combining (36)-(43), the overall computational complexity
for each symbol is

CC =CM

(
CC

[M]

|Ĥ| + CC
[M]
WLLS + CC

[M]
Wiener + CC

[M]

Ĥ

)
+

(
CC

[A]

|Ĥ| + CC
[A]
WLLS + CC

[A]
Wiener + CC

[A]

Ĥ

)
,

(44)

where CM is the weighing coefficient for multiplication,
indicating that the multiplication is much more complex than
addition.

CRAMÉR–RAO LOWER BOUND

A. CRLB for One-shot Phase Estimation

An important question is how accurate the phase of different
transmit and receive laser sources can be estimated in one pilot
group (which is defined in assumption (A1)). Without loss of
generality, the 1st pilot group is considered in this subsection,
and all the corresponding indices are restricted to the 1st pilot
group (i.e. i = 1, 1 ≤ m ≤ Nt, mi = m1 = ⌈Nt/2⌉, Y =
Y1, S = S1, and N = N1).

As shown in Appendix A, the information of φk,mi
and

ψl,mi is only included in the angular terms of YSH , which
are also the observed data of the CRLB in this subsection.

For the 1st pilot group, (2) can be rewritten as

yk,m =

Nt∑
l=1

hk,le
j(φk,m+ψl,m)sl,m + nk,m

=

Nt∑
l=1

hk,le
j(φk,mi

+ψl,mi
+γk,l,m)sl,m + nk,m,

(45)
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where

γk,l,m =(φk,m − φk,mi) + (ψl,m − ψl,mi)

=



−
mi∑

m′=m+1

(∆φk,m′ +∆ψl,m′), (m < mi)

m∑
m′=mi+1

(∆φk,m′ +∆ψl,m′), (m > mi)

0, (m = mi).
(46)

For practical laser sources, the phase noise innovations are
small [15], and the approximation below holds

ejγk,l,m ≈ 1 + jγk,l,m. (47)

Therefore, (45) can be approximated by

yk,: ≈
Nt∑
l=1

hk,le
j(φk,mi

+ψl,mi)sl,:

+j

Nt∑
l=1

hk,le
j(φk,mi

+ψl,mi)
(
sl,: ⊙ γk,l,:

)
+ nk,:.

(48)

Note the fact that YSH is an orthogonal transformation of
the observed data Y, it does not change any information if
the observed data is given by YSH . Moreover, as shown
in Appendix A, the information of φk,mi and ψl,mi is only
included in the angular terms of YSH . When the perfect
channel estimation is assumed, which is the optimal case of the
phase estimation, the element at the kth row and lth column
of the angular terms of the observed data matrix O can be
given by Appendix A as

ok,l =φk,mi
+ ψl,mi

+
n
(2)
k,l

|hk,l|

−
Nt∑
l′=1

mi∑
m′=2

m′−1∑
m=1

ξk,l,l′,m (∆φk,m′ +∆ψl′,m′)

+

Nt∑
l′=1

Nt∑
m′=mi+1

Nt∑
m=m′

ξk,l,l′,m (∆φk,m′ +∆ψl′,m′),

(49)
where n(2)k,l ∼ N

(
0, σ2

n/(2Nt)
)

is i.i.d. real AWGN, and

ξk,l,l′,m
∆
= ℜ

(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
. (50)

where ℜ{·} is the real part of a complex number, and (·)∗
is the complex conjugate operator. It is also worth noting that
the phase noise terms in (49) are from the symbols before and
after the reference index mi, respectively.

In order to calculate the Fisher information matrix, it is
necessary to rearrange the angular terms of the observed data
to vector form as

υ = [o1,:,o2,:, · · · ,oNr,:]
T
. (51)

The expected value of υ is denoted by µυ . Note the fact
that all the noise terms in (49) are zero mean i.i.d. AWGN,
the elements of µυ can therefore be represented as

µυ(Nt(k−1)+l) = φk,mi
+ ψl,mi

. (52)

Considering that the variables to be estimated are given by
(13), (52) can be rewritten as

µυ(Nt(k−1)+l) =

{
βk,mi + βNr+l,mi , (l ̸= Nt)

βk,mi , (l = Nt),
(53)

and the first order derivative of µυ can be calculated as

∂µυ

∂βq,mi

=



0, · · · , 0︸ ︷︷ ︸
(q−1)Nt

, 1, · · · , 1︸ ︷︷ ︸
Nt

, 0, · · · , 0︸ ︷︷ ︸
(Nr−q)Nt


T

, (q ≤ Nr)


repeat Nr times︷ ︸︸ ︷

1×Nt︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸
q−Nr−1

, 1, 0, · · · , 0︸ ︷︷ ︸
Nr+Nt−q

, · · ·



T

, (q > Nr).

(54)
On the other hand, the covariance matrix Συ of υ is defined

as

Συ
∆
= E

[
(υ − µυ) (υ − µυ)

T
]
. (55)

where E (·) denotes the expected value of a variable.
Moreover, as shown in Appendix B, the element at the

(Nt (k1 − 1) + l1)
th row and (Nt (k2 − 1) + l2)

th column of
the covariance matrix Συ has the form of

Συ(Nt(k1−1)+l1,Nt(k2−1)+l2)

=
δ (k1 − k2) δ (l1 − l2)

2Nt |hk1,l1 | |hk2,l2 |
σ2
n

+

⌈Nt/2⌉∑
m′=2

m′−1∑
m1=1

Nt∑
l1′=1

ξk1,l1,l1′,m1


×

m′−1∑
m2=1

Nt∑
l2′=1

ξk2,l2,l2′,m2

σ2
∆φδ (k1 − k2)


+

Nt∑
l′=1

⌈Nt/2⌉∑
m′=2

m′−1∑
m1=1

m′−1∑
m2=1

ξk1,l1,l′,m1ξk2,l2,l′,m2σ
2
∆ψ

+

Nt∑
m′=⌈Nt/2⌉+1

 Nt∑
m1=m′

Nt∑
l1′=1

ξk1,l1,l1′,m1


×

 Nt∑
m2=m′

Nt∑
l2′=1

ξk2,l2,l2′,m2

σ2
∆φδ (k1 − k2)


+

Nt∑
l′=1

Nt∑
m′=⌈Nt/2⌉+1

Nt∑
m1=m′

Nt∑
m2=m′

ξk1,l1,l′,m1
ξk2,l2,l′,m2

σ2
∆ψ,

(56)
where δ (·) is the unit sampling function which is defined as

δ (x)
∆
=

{
1, (x = 0)

0, (x ̸= 0),
(57)

and the first order derivative of the covariance matrix can be
calculated directly from (56) as (58), where the first derivative
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of (50), which is calculated in Appendix C, has the form of

∂ξk,l,l′,m
∂βq,mi

=



−ℑ
(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
,

(l ̸= l′ = q −Nr)

ℑ
(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
,

(l′ ̸= l = q −Nr)

0, otherwise,
(59)

where ℑ{·} is the imaginary part of a complex number.
Using (54), (56), and (58), the element at the q1th row and

q2
th column of the Fisher information matrix FIM can be

represented by the classic form as [28, p. 47, (3.31)]

FIMq1,q2 =
∂µTυ
∂βq1

Σ−1
υ

∂µυ

∂βq2
+

1

2
tr
(
Σ−1

υ

∂Συ

∂βq1
Σ−1

υ

∂Συ

∂βq2

)
,

(60)
and the CRLB for one-shot phase estimation can be calculated
as [28, p. 44, (3.24)]

CRLB (β) = diag
(
FIM−1

)
, (61)

where diag (X) denotes a vector which contains the diagonal
elements of matrix X.

Remark 6: The CRLB derived in this subsection depends
only on the angular information of the observed data. Consid-
ering that most known practical phase estimation algorithms
only use phase information of the observed data for the phase
estimation, this CRLB gives a practical lower bound for the
phase estimation in MIMO systems.

B. CRLB for Element-wise Wiener Estimation

Although the ultimate bound of the phase estimation per-
formance in the MIMO system is very difficult to obtain, a
very useful CRLB for element-wise Wiener estimation can
be obtained to evaluate the performance of the proposed
algorithm.

Note the fact that Wiener estimator is the optimal filter
for the element-wise phase estimation problem [15], [27], the
CRLB is equal to the MSE performance of a two-sided infinite
impulse response (IIR) Wiener filter.

Without loss of generality, we only consider the MSE
performance of the Wiener estimation for the first pilot group.
For the qth IIR Wiener filter, σ2

pW (q) is given by (24),
σ2
β(q) = CRLB (βq) is given by (61), and the coefficient

of the ith pilot group can be rewritten from (26) as [15]

ωi,q =


κτ

1− κ2
κi−1, (i ≥ 1)

κτ

1− κ2
κ1−i, (i < 1) ,

(62)

where
κ = (1 + τ/2)−

√
(1 + τ/2)

2 − 1, (63)

τ = σ2
pW (q)/σ

2
β(q). (64)

By setting LW → +∞ in (25), and noting that the phase
noise is a stationary process with independent increments, the
lower bound of the MSE performance of the Wiener estimator
can be written as

σ2
W (q) =

+∞∑
i=−∞

ω2
i,qσ

2
β(q) +

∞∑
i=2

( ∞∑
i′=i

ωi′,q

)2

σ2
pW (q)

+

0∑
i=−∞

(
i∑

i′=−∞
ωi′,q

)2

σ2
pW (q).

(65)
By substituting (62) into (65) and calculating the summa-

tion, the following equation holds

σ2
W (q) = σ2

β(q)

κ2τ2
(
1 + κ2

)
(1 + κ)

3
(1− κ)

3 +2σ2
pW (q)

κ4τ2

(1 + κ)
3
(1− κ)

5 .

(66)
By substituting (63) and (64) into (66), σ2

W (q) can be
represented by σ2

β(q) and σ2
pW (q). Moreover, the equation can

be simplified by MathematicaTM 11.2.0.0 as

σ2
W (q) =

[
4

σ2
pW (q)σ

2
β(q)

+
1

σ4
β(q)

]− 1
2

. (67)

Wiener filter is the optimal filter for the element-wise phase
estimation problem [28]. Noting that the noise MSE in (67) is
given by (24) and (61), (67) is also the CRLB for the element-
wise Wiener estimators.

∂Συ(Nt(k1−1)+l1,Nt(k2−1)+l2)

∂βq,mi

=

⌈Nt/2⌉∑
m′=2

m′−1∑
m1=1

Nt∑
l1′=1

m′−1∑
m2=1

Nt∑
l2′=1

(
∂ξk1,l1,l1′,m1

∂βq,mi

ξk2,l2,l2′,m2
+ ξk1,l1,l1′,m1

∂ξk2,l2,l2′,m2

∂βq,mi

)
σ2
∆φδ (k1 − k2)

+

Nt∑
l′=1

⌈Nt/2⌉∑
m′=2

m′−1∑
m1=1

m′−1∑
m2=1

(
∂ξk1,l1,l′,m1

∂βq,mi

ξk2,l2,l′,m2
+ ξk1,l1,l′,m1

∂ξk2,l2,l′,m2

∂βq,mi

)
σ2
∆ψ

+

Nt∑
m′=⌈Nt/2⌉+1

Nt∑
m1=m′

Nt∑
l1′=1

Nt∑
m2=m′

Nt∑
l2′=1

(
∂ξk1,l1,l1′,m1

∂βq,mi

ξk2,l2,l2′,m2
+ ξk1,l1,l1′,m1

∂ξk2,l2,l2′,m2

∂βq,mi

)
σ2
∆φδ (k1 − k2)

+

Nt∑
l′=1

Nt∑
m′=⌈Nt/2⌉+1

Nt∑
m1=m′

Nt∑
m2=m′

(
∂ξk1,l1,l′,m1

∂βq,mi

ξk2,l2,l′,m2
+ ξk1,l1,l′,m1

∂ξk2,l2,l′,m2

∂βq,mi

)
σ2
∆ψ.

(58)
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Fig. 15. MSE performance of WLLS-Wiener phase estimation (red lines)
and corresponding CRLB (black dashed lines) in a 2×2 MIMO system. The
influence of Wiener filter tap length (Ltap = 1, 3, 5, ..., 21) at SNR = 0
(circles), 10 (squares), and 20 dB (triangles).

DETAILED SIMULATION RESULTS

C. Further Details on Phase Estimation

In order to quantify the influence of the Wiener filter tap
length, Fig. 15 compares the phase estimation MSE perfor-
mance of WLLS-Wiener phase estimator for different Wiener
filter tap lengths (Ltap = 1, 3, 5, ..., 21). As shown in Fig. 15,
when the SNR is lower, the effective filter length will be larger
and the curve converges slower. When the filter tap length is
small, we can observe more MSE performance degradation
due to the inadequate tap length. When the filter length is large
and the curve converges, an MSE performance degradation is
observed, and the performance degradation is larger when the
SNR is lower. We believe this is mainly due to the small angle
assumption in the derivation.

Fig. 5 indicates that the MSE has a minimum value, or floor
in the High SNR region. In order to verify the origin of this
floor, Fig. 16 compares the phase estimation MSE performance
of the WLLS one-shot phase estimator for different phase
noise variances (σ2

∆ = 10−3, 10−4, 10−5). In the low SNR
region, the MSE is similar as it is dominated by AWGN. In
the high SNR region, the MSE floor is dominated by intra-
pilot-group phase noise, which is proportional to the phase
noise variance. Therefore, the MSE floor is also proportional
to the phase noise variance. Moreover, similar to Fig. 5, the
MSE penalty in the very high SNR region is due to neglecting
the intra-pilot-group phase noise in the WLLS estimator.

Fig. 17 compares the phase estimation MSE performance
of the WLLS-Wiener phase estimator for different phase
noise variances (σ2

∆ = 10−3, 10−4, 10−5). Unlike Fig. 16,
where similar performance is observed for all phase noise
variances in the low SNR region, a phase noise dependent
MSE performance is observed. This is because the effective
length of the Wiener filter is shorter when the phase noise is
larger, and so there is less noise averaging. Again, the MSE
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Fig. 16. MSE performance of WLLS one-shot phase estimation (red lines)
and corresponding CRLB (black dashed lines) in a 2 × 2 MIMO system.
σ2
∆ = 10−3 (squares), 10−4 (circles), 10−5 (triangles).
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Fig. 17. MSE performance of WLLS-Wiener phase estimation (red lines)
and corresponding CRLB (black dashed lines) in a 2 × 2 MIMO system.
σ2
∆ = 10−3 (squares), 10−4 (circles), 10−5 (triangles).

degradation in the low SNR region is mainly due to the small
angle approximation.

D. Further Details on BER performance

Fig. 18 compares the BER performance of the proposed
phase and channel estimation algorithm for different phase
noise variances (σ2

∆ = 10−3, 10−4, 10−5). In the low SNR
region, although the phase noise dependent MSE performance
is observed in Fig. 17, we only observe very small BER
penalty in Fig. 18. This is because the dominant factor in
this region is AWGN rather than phase estimation error. In
the high SNR region, the BER floor is lower when the phase
noise is smaller, which is a direct consequence of the MSE
floor in Fig. 17
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Fig. 18. BER of a 2 × 2 MIMO system. σ2
∆ = 10−3 (circles), 10−4

(squares), 10−5 (triangles). Red lines: proposed algorithm; blue dotted lines:
EKF in [17]; black dashed lines: perfect phase and channel estimation.
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Fig. 19. BER of a 2×2 MIMO system. Different modulation formats (BPSK
(circles), QPSK (squares), and 16-QAM (triangles)). Red lines: proposed
algorithm; blue dotted lines: EKF in [17], black dashed lines: perfect phase
and channel estimation.

In order to verify the compatibility with higher modulation
formats such as quadrature amplitude modulation (QAM),
Fig. 19 compares the BER performance of the proposed phase
and channel estimation algorithm for BPSK, quadrature phase
shift keying (QPSK), and 16-QAM. A higher modulation
format is more vulnerable to the phase error, leading to
a higher BER floor. Compared with the perfect phase and
channel estimation scenario at the HD-FEC limit, the proposed
algorithm has an SNR penalty of approximately 0.3 dB,
0.5 dB, and 1.2 dB, while the conventional algorithm has an
SNR penalty of approximately 3.5 dB, 3.5 dB, and 4.0 dB for
BPSK, QPSK, and 16-QAM, respectively.

Fig. 20 compares the BER performance of the proposed
phase and channel estimation algorithm for different MIMO
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Fig. 20. BER of different MIMO systems. 2× 2 (circles), 2× 3 (squares),
and 2× 4 (triangles). Red lines: proposed algorithm; blue dotted lines: EKF
in [17]; black dashed lines: perfect phase and channel estimation.

systems (2 × 2, 2 × 3, and 2 × 4. The results indicate that
for a fixed transmit antenna number (Nt), a larger receive
antenna number (Nr) can lead to a better BER performance.
This is because the diversity order of MMSE MIMO decoder
is Nr −Nt + 1, and a larger diversity order leads to a better
performance for the reference system with perfect estimation
[11]. Moreover, a lower BER floor is also observed when Nr
is larger. We believe redundant degrees of freedom in MIMO
systems can lead to better resistance to the imperfect phase
and channel estimations. Compared with the perfect phase and
channel estimation scenario at the HD-FEC limit, the proposed
algorithm has an SNR penalty of approximately 0.5 dB, 0.3 dB,
and 0.2 dB, while the conventional algorithm has an SNR
penalty of approximately 3.6 dB, 3.2 dB, and 3.3 dB for 2×2,
2× 3, and 2× 4 MIMO systems, respectively.

APPENDIX A
THE ANGULAR TERMS OF THE OBSERVED DATA

Consider the observed data below

O′ =
1

Nt
YSH . (68)

The element at the kth row and lth column of O′ can be
calculated by (48) as

o′k,l =
1

Nt
yk,:s

H
l,:

≈ 1

Nt

Nt∑
l′=1

hk,l′e
j(φk,mi

+ψl′,mi
)sl′,:s

H
l,: +

1

Nt
nk,:s

H
l,:

+ j
1

Nt

Nt∑
l′=1

hk,l′e
j(φk,mi

+ψl′,mi
) (sl′,: ⊙ γk,l′,:

)
sHl,:.

(69)
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Note the fact that S is an orthogonal matrix with normalized
elements, (69) can be simplified as

o′k,l ≈ hk,le
j(φk,mi

+ψl,mi) + n
(1)
k,l

+ j

Nt∑
l′=1

[
hk,l′e

j(φk,mi
+ψl′,mi

)

Nt

Nt∑
m=1

(
sl′,ms

∗
l,mγk,l′,m

)]
,

(70)
where n

(1)
k,l ∼ CN

(
0, σ2

n

/
Nt
)

is i.i.d. circularly-symmetric
complex AWGN.

Define

ηk,l,l′,m
∆
=

hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m. (71)

Equation (70) can be represented as

o′k,l ≈ hk,le
j(φk,mi

+ψl,mi)

+ hk,le
j(φk,mi

+ψl,mi) ·
n
(1)
k,l

hk,le
j(φk,mi

+ψl,mi)

+ hk,le
j(φk,mi

+ψl,mi)j

Nt∑
l′=1

Nt∑
m=1

ηk,l,l′,mγk,l′,m.

(72)

When the complex term X is assumed to be small, below
approximation holds

1 +X ≈ (1 + ℜ (X)) ejℑ(X). (73)

By extracting the term hk,le
j(φk,mi

+ψl,mi) in (72) and using
(73), (72) can be rewritten as

o′k,l ≈ hk,l

(
1 +

n
(3)
k,l

|hk,l|
+

Nt∑
l′=1

Nt∑
m=1

ℑ (ηk,l,l′,m) γk,l′,m

)

× e
j

(
φk,mi

+ψl,mi
+

n
(2)
k,l

|hk,l|+
Nt∑
l′=1

Nt∑
m=1

ℜ(ηk,l,l′,m)γk,l′,m

)
,

(74)
where n

(2)
k,l =ℑ

(
n
(1)
k,l e

−j(∠hk,l+φk,mi
+ψl,mi)

)
n
(3)
k,l =ℜ

(
n
(1)
k,l e

−j(∠hk,l+φk,mi
+ψl,mi)

)
.

(75)

are i.i.d. real AWGN with zero mean and variance σ2
n

/
2Nt.

Noting the fact that n(1)k,l is i.i.d. circularly-symmetric com-
plex AWGN, the exponential term in (75) does not change the
distribution of n(2)k,l and n

(3)
k,l . Therefore, the information of

φk,mi
and ψl,mi

is only included in the angular term of (74).
If perfect channel estimation is assumed, which is the optimal
case of the phase estimation, the effective observed data for
the phase estimation is the angular term of (74), which can be
written as

ok,l = φk,mi +ψl,mi +
n
(2)
k,l

|hk,l|
+

Nt∑
l′=1

Nt∑
m=1

ξk,l,l′,mγk,l′,m, (76)

where ξk,l,l′,m = ℜ (ηk,l,l′,m) is given by (50).

By substituting (46) into (76), the equation can be rewritten
as

ok,l = φk,mi
+ ψl,mi

+
n
(2)
k,l

|hk,l|

−
Nt∑
l′=1

mi−1∑
m=1

mi∑
m′=m+1

ξk,l,l′,m (∆φk,m′ +∆ψl′,m′)

+

Nt∑
l′=1

Nt∑
m=mi+1

m∑
m′=mi+1

ξk,l,l′,m (∆φk,m′ +∆ψl′,m′),

(77)
and (49) can be directly obtained by changing the order of
summation in (77).

APPENDIX B
DERIVATION OF (56)

Equation (55) can be rewritten in element-wise form as

Συ(Nt(k1−1)+l1,Nt(k2−1)+l2)

= E
[(
ok1,l1 − µυ(Nt(k1−1)+l1)

) (
ok2,l2 − µυ(Nt(k2−1)+l2)

)]
,

(78)
Noting the fact that all the phase noise increment and

AWGN are mutually independent random variables, the cross-
covariance between any two different noise sources is zero. By
substituting (49) and (53) into (78), the 1st non-zero term of
(78) can be written as

E

(
n
(2)
k1,l1

|hk1,l1 |
n
(2)
k2,l2

|hk2,l2 |

)
=

1

|hk1,l1 | |hk2,l2 |
E
(
n
(2)
k1,l1

n
(2)
k2,l2

)
=
σ2
nδ (k1 − k2) δ (l1 − l2)

2Nt |hk1,l1 | |hk2,l2 |
.

(79)
The 2nd non-zero term of (78) can be written as

E

−
mi∑

m′
1=2

m′
1−1∑

m1=1

Nt∑
l′1=1

ξk1,l1,l′1,m1

∆φk1,m′
1

×

− mi∑
m′

2=2

m′
2−1∑

m2=1

Nt∑
l′2=1

ξk2,l2,l′2,m2

∆φk2,m′
2


=

mi∑
m′=2

m′−1∑
m1=1

Nt∑
l′1=1

ξk1,l1,l′1,m1


×

m′−1∑
m2=1

Nt∑
l′2=1

ξk2,l2,l′2,m2

σ2
∆φδ (k1 − k2)

 .

(80)

The 3rd non-zero term of (78) can be written as

E

− Nt∑
l1′=1

mi∑
m1

′=2

m1
′−1∑

m1=1

ξk1,l1,l1′,m1

∆ψl1′,m1
′


×

− Nt∑
l2′=1

mi∑
m2

′=2

m2
′−1∑

m2=1

ξk2,l2,l2′,m2

∆ψl2′,m2
′


=

Nt∑
l′=1

mi∑
m′=2

m′−1∑
m1=1

m′−1∑
m2=1

ξk1,l1,l1′,m1
ξk2,l2,l2′,m2

σ2
∆ψ.

(81)
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Similar to (80), the 4th non-zero term of (78) can be written
as

E

 Nt∑
m′

1=mi+1

 Nt∑
m1=m′

1

Nt∑
l′1=1

ξk1,l1,l′1,m1

∆φk1,m′
1

×
Nt∑

m′
2=mi+1

 Nt∑
m2=m′

2

Nt∑
l′2=1

ξk2,l2,l′2,m2

∆φk2,m′
2


=

Nt∑
m′=mi+1

 Nt∑
m1=m′

Nt∑
l′1=1

ξk1,l1,l′1,m1


×

 Nt∑
m2=m′

Nt∑
l′2=1

ξk2,l2,l′2,m2

σ2
∆φδ (k1 − k2)

 .

(82)

Similar to (81), the 5th non-zero term of (78) can be written
as

E

 Nt∑
l1′=1

Nt∑
m1

′=mi+1

(
Nt∑

m1=m1
′

ξk1,l1,l1′,m1

)
∆ψl1′,m1

′


×

 Nt∑
l2′=1

Nt∑
m2

′=mi+1

(
Nt∑

m2=m2
′

ξk2,l2,l2′,m2

)
∆ψl2′,m2

′


=

Nt∑
l′=1

Nt∑
m′=mi+1

Nt∑
m1=m′

Nt∑
m2=m′

ξk1,l1,l′,m1
ξk2,l2,l2′,m2

σ2
∆ψ.

(83)
Moreover, all the other terms in (78) are equal to 0, and (56)

can be obtained by substituting (79), (80), (81), (82), (83) into
(78).

APPENDIX C
DERIVATION OF (59)

By substituting (13) into (50), the first derivative under
different cases can be calculated as below:

When l′ ̸= l, q = l′ + Nr, and l ̸= Nt, the first derivative
of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
ej(βq,mi

−βl+Nr,mi)sl′,ms
∗
l,m

)
=−ℑ

(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
.

(84)
When l′ ̸= l, q = l′ + Nr, and l = Nt, the first derivative

of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
ejβq,mi sl′,ms

∗
l,m

)
= −ℑ

(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
.

(85)

When l′ ̸= l, q = l + Nr, and l′ ̸= Nt, the first derivative
of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
ej(βl′+Nr,mi

−βq,mi)sl′,ms
∗
l,m

)
= ℑ

(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
.

(86)

When l′ ̸= l, q = l + Nr, and l′ = Nt, the first derivative
of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
e−jβq,mi sl′,ms

∗
l,m

)
= ℑ

(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
.

(87)

When l′ ̸= l, q ̸= l+Nr, and q ̸= l′+Nr, the first derivative
of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
ej(ψl′,mi

−ψl,mi)sl′,ms
∗
l,m

)
= 0.

(88)
When l′ = l, the first derivative of (50) has the form of

∂ξk,l,l′,m
∂βq,mi

=
∂

∂βq,mi

ℜ
(
hk,l′

Nthk,l
sl′,ms

∗
l,m

)
= 0, (89)

and (59) is obtained by directly combining (84)-(89).




