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Coupled Transceivers-Fiber Nonlinearity
Compensation Based on Machine Learning for

Probabilistic Shaping System
Tu Thanh Nguyen, Tingting Zhang, Elias Giacoumidis, Paul Harper and Andrew Ellis

Abstract—In this paper, we have studied the impact of prob-
abilistic constellation shaping (PCS) signals on transceivers
and proposed, for the first time, an artificial neural network
(ANN)-based nonlinearity conpensation (NLC) to compensate
for coupled-nonlinear distortion from the transceivers and fiber
propagation (Kerr effects) for a PCS system. A PCS dual-
polarization 28 GBaud system equipped with an ANN-based
nonlinear compensator is experimentally demonstrated. The per-
formance of the proposed ANN-based NLC is first studied for
transceivers nonlinearity compensation in the PCS 64/256-QAM
system and its performance improvement is also compared to
that of the uniformly constellation 64/256-QAM formats. We
then investigate experimentally the effectiveness of the proposed
scheme to compensate for coupled-nonlinearity (transceivers and
fiber-induced nonlinearity) for uniform and shaped 256-QAM
signals over a fiber channel of 300 km and 500 km inline
Erbium-doped-amplification link. The Experimental results show
that a SNR performance gain up to 1 dB can be achieved
for compensating the transceivers nonlinearity with the artificial
neural network (ANN)-based NLC. In the present of the coupled
transceivers and fiber-induced nonlinearity, a mutual information
enhancement of ∼0.25 bits/symbol is demonstrate experimentally
for a fiber link of up to 500 km with the aid of the proposed
NLC.

Keywords—Transceiver nonlinearity, machine learning, ANN,
nonlinear equalizer, probabilistic shaping, fiber nonlinearity.

I. INTRODUCTION

To meet the fast-increasing demand of data traffic, high-
order quadrature amplitude modulation (QAM) formats com-
bined with probabilistic constellation shaping (PCS) have
attracted a lot of attention in recent years. This combina-
tion enables both high spectral efficiency (SE) and flexible
transmissions [1]–[5]. Adaptable transmission rates can be
easily realized by adjusting only the shaping factor in stead of
modifying forward-error-correction (FEC), changing systems
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bandwidth, using hybrid modulation format and/or sub-carrier
multiplexing. The idea of PCS is to shape the signal constel-
lation as close as possible to the optimum constellation for
the channel. As a proof of concept, a near-optimal signal-to-
noise ratio (SNR) gain of 1.53 dB is feasible when employing
the probabilistic shaping technique in a Gaussian channel [2].
Although the PCS is one of the most promising candidates for
next generation transponders, its impacts on the digital signal
processing (DSP) chain and on the transceivers including fiber
channel have not been fully explored yet and thus, it requires
further investigation.

Generally speaking, the implementation of high-order mod-
ulation formats such as 64-QAM and beyond is often a big
challenge due to the requirement for high SNR, high effective
number of quantization-bits of digital-to-analog converters
(DACs)/analog-to-digital converters (ADCs). This problem is
envisaged that will be more severe when PCS signals are mod-
ulated. In addition, PCS signals may require DSP adaptation
for data recovery because conventional DSP algorithms such
as blind phase noise recovery and linear equalizer are generally
not compatible with shaping systems [1], [6], [7].

Due to their higher peak-to-average power ratio (PAPR)
than that of the uniformly distributed constellations, the PCS
signals may require a better transceivers linearity, which is
yet is practically limited by the imperfection of transceiver
devices such as DAC/ADC, power amplifiers and optical mod-
ulators. In literature, the nonlinearity transceivers for uniform
constellation systems can be compensated using digital filters
[8], [9]. Nevertheless, it is difficult to estimate the exact
coefficients of these filters as the result of the nonlinear mixing
from different devices of the transceivers, especially in a
mesh optical network. To partly deal with this problem, a
supervised machine-learning-based technique, namely ANN,
has been recently applied numerically for uniform 64-QAM as
a pre-distortion compensation [10]. However, in [10] authors
considered low resolution DAC at the transmitter and ignored
nonlinear contributions from other components such as optical
modulators, ADCs and fiber-induced nonlinearity. Since the
increased PAPR places greater demand on effective number-
of-bits (ENoB) of DACs/ADC and increases sensitivity to
transponders and fiber-induced nonlinearity, more nonlinear
distortion is expected when deploying PCS signals on the
same system infrastructure. The penalty due to the coupled
nonlinearity may be considerable in practical PCS systems.
This coupled nonlinearity, however, is complicated to describe
analytically due to the interplay between the nonlinearity,
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bandwidth, and system memory (dispersion) of multiple com-
ponents of the link, which not only vary from link to link, but
which may also vary with time.

In order to compensate for the transceivers nonlinearity,
we have recently proposed to use the ANN algorithm at the
receiver for PCS systems as the post-compensation [11]. In
this paper, we extend our work and experimentally demonstrate
the effectiveness of the proposed scheme for compensating not
only the nonlinear distortion from transceivers but also the Kerr
nonlinearity in an optical channel of up to 500 km standard
single mode fiber (SSMF). Initially, the proposed approach
for transceivers nonlinearity compensation is experimentally
demonstrated for the PCS dual-polarization (DP) 28 GBaud
64/256-QAM system under different shaping factors. The per-
formance the proposed scheme for compensating the coupled
transceivers-fiber nonlinearity is then studied experimentally
for uniform and shaped 256-QAM signals over an optical link
of 300 km and 500 km inline Erbium-doped fiber amplifier
(EDFA)-based SSMF. Different ANN configurations for the
nonlinear compensation (NLC) are also discussed under the
fiber transmission. While there is no significant improve-
ment observed in PCS 64-QAM, a SNR gain of 1 dB is
experimentally demonstrated for combating the transceivers
nonlinearity in PCS 256-QAM using the proposed ANN-based
NLC scheme. On the other hand, a mutual information (MI)
enhancement of ∼0.25 bits/symbol with the proposed NLC
for compensating the coupled transceivers-fiber nonlinearity
is demonstrated experimentally for the PCS 256-QAM system
over a transmission distance of 500 km SSMF.

II. FUNDAMENTALS OF PROBABILISTIC SHAPING AND
PRINCIPLE OF ANN-BASED NONLINEAR EQUALIZER

A. Probabilistic shaping: a brief introduction
The basic principle of PCS is to code the signal such that

different a-priori probabilities belong to different constella-
tions. Generally, lower-energy symbols (near the origin) are
taken place more often than higher-energy signals (far from
the origin) after PCS. This results in a reduction in average
transmitted power, and therefore higher fiber nonlinearity
tolerance. In this work, we deploy the well-known Maxwell-
Boltzmann (MB) distribution for generating a set of probability
mass functions (PMFs), PX(xj), for each modulation format
as [2]:

PX(xj) =
e−κ|xj |

2∑M
k=1 e

−κ|xk|2
, j = 1, 2, ...,M, (1)

where xj is one of the input alphabet, M is the modulation size
(e.g. M = 64 for 64-QAM) and κ is the shaping factor. For
maximum transmission capacity, the shaping factor needs to be
optimized. Generally, this optimization is a function of signal
power, modulation format and SNR [2]. For each complex
QAM, two-dimension (2D) optimization (representing the real
and imaginary parts) needs to be carried out. To simplify this
process, square QAM is deployed and this is the reason 128-
QAM is not considered here. The 2D optimization for PCS
QAM can be simplified to one-dimensional (1D) optimiza-
tion for the corresponding PCS pulse amplitude modulation
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Fig. 1: Comparison in terms of mutual information between 64-QAM and
256-QAM under different shaping factors. Note that κ = 0 means uniform
constellation (no shaping).

(PAM). In this work, we chose 64-QAM and 256-QAM,
for the experimental verification. We have also assumed that
the location of shaped symbols are similar to the uniformly
distributed constellation, i.e. their real or imaginary amplitudes
are integers of ±(2k + 1), k = 0, 1, ...,

√
M/2− 1.

Fig. 1 shows the comparison in terms of MI (representing
the number of bits per symbol, also known as symbol-wise
achievable information rate), between 64-QAM and 256-QAM
under different shaping factors. Note that κ = 0 corresponds
to the uniform constellation (no shaping). The MI is estimated
via Monte-Carlo simulation of N input-output symbol pairs
(xk, yk) as

MI =
1

N

N∑
k=1

log2
qY |X(yk|xk)∑M

xj=1 qY |X(yk|xj)PX(xj)
, (2)

where qY |X(y|x) = 1√
2πσ2

exp(− |y−x|
2

2σ2 ) is the Gaussian
channel transition probability density function with σ2 and
(x, y) being the noise variance and the input-output pair of
the channel, respectively. In this figure, the Shannon capacity
limit in Gaussian channel is also given as log2(1 + SNR) for
reference (labeled as “Shannon limit”).

For 64-QAM and 256-QAM, four shaping rates are con-
sidered to study in this paper: κ1 = 0.03 and κ2 = 0.07
for PCS 64-QAM; and κ3 = 0.009 and κ4 = 0.019 for
PCS 256-QAM. Fig. 1 shows the MI evolution of 64/256-
QAM under different shaping rates with respect to SNR. For
a single modulation format, the MI curves associated with
uniform constellation (no shaping) and optimal constellation
(shaping rate optimized at each SNR for a full shaping gain)
are also provided. The chosen shaping rates are adopted from
[12] in which only two fixed PMFs are sufficient for a wide
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Fig. 2: PAPR comparison of QAM signals under different shaping rates: (a)
64-QAM and (b) 256-QAM.

SNR range with a negligible penalty (at about 0.1 dB of SNR)
to the optimum shaping. The entropy, which indicates the
maximum information rate at infinite SNR, of the investigated
PCS systems with shaping rates of κ1, κ2, κ3 and κ4 is
5.66, 4.91, 7.57 and 6.79, respectively. For fiber channel, these
shaping factors are also good choices as they give a relative
maximum shaping gain and thus, further optimization is not
necessary to carry out [12].

Fig. 1 also indicates there is a SNR range for which
constellation shaping should be applied for each modulation
format. For instance, in order to maintain a noticeable shaping
gain, the PCS should be applied for systems under SNR ranges
<21 dB and <27 dB for 64-QAM and 256-QAM, respectively.
Taking into account the constraint of less than 0.1 dB SNR
penalty to the full shaping gain using the aforementioned
rates and potential higher implementation penalty of 256-
QAM versus 64-QAM, the suggested SNR ranges for κ1,2,3,4
are roughly [8 dB, 12 dB], [12 dB, 16 dB], [14 dB, 18 dB] and
[18 dB, 22 dB], respectively.

B. Impact of PCS signals on transceivers
It is clear that PCS changes the statistical property of

the transmitted signal. In this section, the figure of PAPR
metric is investigated for PCS signals with different shap-
ing factors. The PAPR of a signal x(n) is calculated as
PAPR (dB) = 10log10

max|x(n)|2
E[|x(n)|2] , where E{.} is the expectation
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Fig. 3: (a) Structure of artificial-neural-network-based nonlinear compensation
(ANN-based NLC). (b) Input-output relationship of a “neuron” in the hidden
and output layer.

operator. Fig. 2 shows the PAPR comparison in terms of
complementary cumulative distribution function (CCDF) of
QAM signals with and without PCS. The vertical axis is
the CCDF showing how often a certain PAPR value in the
horizontal axis is exceeded. The CCDF were measured after
pulse-shape filtering using a root-raised-cosine (RRC) filter
(0.1 roll-off factor and up-sampling at 2 samples per symbol).
For comparison purpose, two aforementioned shaping factors
in the Section 2 were considered for each modulation format.
As shown from Fig. 2-a and Fig. 2-b, the trend of the PAPR
curves for the two studied QAMs is almost identical. The
shaping signals exhibit larger PAPR than the uniform constel-
lation cases (κ = 0) and the more shaping, the worse PAPR.
Specifically, for 64-QAM, at the same probability of 1 %, the
PAPR increases by 0.7 dB and 1.5 dB when the shaping factor
increases from 0 to 0.03 and from 0 to 0.07, respectively. The
same amount of PAPR increment is also seen for 256-QAM
signals. The PAPR increments result in the increase nonlinear
distortions, unless the linear operation ranges are increased
accordingly. The higher PAPR also imposes more Kerr-induced
nonlinear noise which is proportional to the instantaneous
power of the signal propagating through the optical fiber.

C. Principle of ANN-based NLC

Machine learning approaches for fiber communications have
gained a lot of attention and been intensively studied in
optical communications recently due to their capability of
providing practical solutions for complicated systems in which
analytic approach is not available. Several common appli-
cations of the machine learning in optical communications
can be performance monitoring and fiber-induced nonlinearity
compensation [13]–[18]. Hitherto machine learning algorithms
have been harnessed mostly for uniform QAMs. Very recently,
however, a few machine learning-based algorithms such as
ANN and deep-learning algorithms have been implemented
for probabilistic shaping systems but mainly for the purpose
of constellation optimization [19], [20] .
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The proposed ANN-based NLC is one of the regression-
based supervised-learning algorithm. Fig. 3-a shows the struc-
ture of a simple feed-forward network deployed in this paper
as the NLC. This structure is a typical configuration of ANN.
In short, it comprises of n-input x 4-output with two hidden-
layers each of 10 nodes (also known as “neurons”). The
number of inputs will be a function of memory depth m as
4(m+1) whereas the factor of 4 represents real and imaginary
components of dual-polarization signals. The aim of ANN is to
find a function that maps the input to the desired target through
a number of intermediate steps produced by the neurons in the
network.

Within each neuron (Fig. 3-b), there are three calculations
taking place: (1) weight multiplication of inputs (subscripts
1, 2, ..., n), (2) adding a bias (the input with subscript 0) to
the weighted data, and (3) passing the results of (2) through
an activation function. In the proposed ANN-based NLC
scheme, the activation function used in each hidden layer
is a nonlinear hyperbolic tangent sigmoid transfer function,
whereas 4 neurons of the output layer use a linear transfer
function.

The ANN-based NLC was operated in two phases: the train-
ing and operational phase. In a supervised learning scheme,
the training phase needs information of transmitted data and
optimize weights of the ANN is figured out via the batch
Levenberg-Marquardt back-propagation algorithm (using gra-
dient descent) [21]. Around 215 transmitted symbols are used
in the training phase in which the ratios of 70 % (batch size),
15 % and 15 % are dedicated for the training, validation and
testing, respectively. At the very begining of the training,
initialize weights, θ0, are generated randomly. For the kth

batch (epoch), the model output, yθk(x) is calculated by
implementing the forward propagation of the input x. Then,
the difference between targets and model outputs, also known
as loss function Jθ = E{yθk(x) − x}2, is computed. Next,
the gradients of the loss function, i.e. partial derivatives of the
loss function with respect to all the weights ∂Jθ

∂θlm
, is calculated

in a back-propagation manner. The weight parameters are
then updated in response to the gradients for the next epoch
as θk+1 = θk − ∂Jθ

∂θ . This cycle repeats in the (k + 1)th

epoch until the minima of the loss function or the maximum
number of epochs is reached. The number of epochs is 100.
After the training, the inverted nonlinear function with the
optimum parameter set, reflects the coupled nonlinearity of
the transceivers and from the transmission fiber, is used as the
NLC.

In the operational phase, the received signals are simply
compensated by passing the received signals through the
trained ANN. In optical back-to-back configuration, we as-
sumed that the nonlinear distortion from transceivers was static
or time-slowly varying, and therefore the training phase was
only performed once at the optimum condition (i.e. highest
SNR). This training process may be repeated periodically if
necessary (during initialization/calibration stages, for exam-
ple). Regarding fiber channel, however, the ANN re-training is
required. This depends on how long the link is and also how
deeply shaped signal is. This will be discussed more in detail
in Section IV.

Regarding the complexity of the proposed scheme, typically
the number of real multiplications can be used as the figure
of merit because the complexity of other operations such as
additions take a small proportion of the total complexity. Let
denote the number of nodes in the kth hidden layer being
N h
k . The number of real multiplications per symbol of the

ANN-based NLC operating in a forward manner is easily cal-
culated as 4(m+ 1)N h

1 +N h
1N

h
2 +N h

2N
h
3 + ...+N h

n4. Note
that the activation function in each node can be implemented
efficiently by using a look-up-table [22]. Thus, the ANN-
based NLC requires only 380 real multiplications per symbol
(m = 5, N h

1 = 10, N h
2 = 10).

III. EXPERIMENTAL SETUP

The experimental setup of the 28 GBaud PCS DP 64/256-
QAM system is shown in Fig. 4. At the transmitter, four
streams of 8/16-PAM data, each of ∼60 000 symbols, with
desired PMFs according to the aforementioned shaping rates
were generated randomly. Then, PCS 64/256-QAM signals on
each polarization were formed by combining two indepen-
dently shaped 8/16-PAM sequences which represent their real
and imaginary components. The shaped symbols were nor-
malized for a unit average power and multiplexed with 5 % of
4-QAM pilot symbols (i.e. 1 pilot in every 20 symbols) to aid
the DSP algorithms at the receiver for channel equalization and
phase noise compensation. The power of 4-QAM pilot symbols
was also normalized to 1 before the multiplexing. There was
no DSP adaptation for the implemented PCS in this paper as
they were replied on pilot-aided symbols. A RRC filter with
a roll-off factor of 0.1 was then applied and up-sampled at 2
samples-per-symbol. After this off-line processing, the signal
was loaded into the Keysight M8195A arbitrary waveform
generator (4-channel 8-bit DAC sampling at 56 GSa/s) and
subsequently converted into the optical domain by using a
conventional DP optical modulator (laser linewidth ∼100 kHz
on 192.4 THz) - the Tektronix OM5110. An EDFA followed
by a variable optical attenuator (VOA) was used to control the
launched power before the signal enters to the channel.

For the channel, two configurations were set up: optical
back-to-back and inline-EDFA transmissions. In the optical
back-to-back configuration, the VOA at the transmitter together
with an EDFA before the coherent reception were used to
vary SNR. With the inline EDFA-based fiber transmission, two
distances were considered: 300 km and 500 km SSMF which
consist of 3 and 5 in-line EDFAs (6 dB noise figure) - each
after 100 km of SSMF (Sterlite G.652.D) for compensation of
the fiber loss, respectively.

At the receiver, the optical signal was first converted into
electrical domain using a homodyne coherent reception. It
consists of a local oscillator (LO) (linewidth ∼100 kHz), a 90o

hybrid and four pairs of balanced photo-detectors. Electrical
signals were captured and digitized by a real-time oscillo-
scope with 8-bit ADCs sampling at 100 GSa/s before off-
line processing. In the off-line DSP, re-sampling took place
first at 2 samples per symbol. Then, the digital signals were
formatted/scaled by a signal conditioning module. For the fiber
transmission, the impact of chromatic dispersion (CD) was
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Fig. 4: Experimental setup for a dual polarization probabilistically-shaped 28 GBaud 64/256-QAM systems. ECL: external cavity laser, EDFA: Erbium-doped
fiber amplifier, VOA: variable optical attenuator, OBPF: optical bandpass filter, LO: local oscillator, PDs: photodetectors, CD: chromatic dispersion, DSP: digital
signal processing, ANN-based NLC: artificial-neural-network based nonlinearity compensation, trans.: transmission.

removed simply by using an inverse function of CD in fre-
quency domain. The timing recovery and frequency offset error
correction algorithms were placed before the matched-filtering
using a Gardner phase detector and a conventional Fourier-
transform-based method, respectively [23], [24]. A pilot-aided
butterfly-structure adaptive equalizer (21 taps) was then carried
out to cancel linear effects [25]. The well-known constant-
modulus algorithm was used for adapting filter coefficients at
pilot locations. Phase noise was estimated and compensated
using a conventional pilot-aided (CPA) method. The CPA
estimated the phase noise in a block-wise manner in which 8
pilots in each block was deployed for sufficient noise averaging
[26]. After this stage, the ANN-based NLC was deployed to
compensate for the nonlinear impairment from the transceivers
and/or the optical fiber. Finally, just before QAM de-mapping,
the pilot symbols were removed and only PCS 64/256-QAM
symbols were taken into account for MI estimation with the
aid of the transmitted data followed Eq. 2.

IV. RESULTS AND DISCUSSION

To assess the performance of the proposed systems, we
adopt the figure of merit of MI given in bits/symbol. MI
was measured for DP but their averages were presented. MI
was computed from 15 frames, each of ∼60 000 symbols per
polarization.

A. Optical back-to-back performance

Fig. 5 shows the system performance with and without the
proposed ANN-based NLC in terms of MI versus equivalent
SNRs (derived from optical SNRs in a reference bandwidth of
12.5 GHz) for DP 64-QAM (Fig. 5-a) and 256-QAM (Fig. 5-b)
in the optical back-to-back configuration. For both modulation
formats, a curve labelled as “Shannon” is also plotted for a
reference.

For the shaped 64-QAM system (Fig. 5-a), there is only a
little improvement (< 0.05 bits/symbol) for all systems under
test, i.e. uniform, PCS with κ = 0.03 and PCS with κ = 0.07,
when equipping the proposed scheme for transceivers nonlin-
earity compensation. This is due to the fact that the number
of quantization bits of DAC/ADC in this experiment is large
enough to support 64-QAM signals and the modulator was
well-calibrated. This figure also shows that around more than
1 dB SNR shaping gain can be experimentally achieved using
the two fixed PMFs in a wide range of SNRs, i.e κ = 0.07
for SNRs from ∼10 dB to ∼15 dB and κ = 0.03 for SNRs
from ∼15 dB to ∼20 dB. Due to the little improvement when
applying the NLC shown in 64-QAM, we focus on 256-QAM
from now on for evaluating performance of the proposed NLC
scheme.

On the other hand, the performance improvement when
deploying 256-QAM with the ANN-based NLC is significant,
as depicted in Fig. 5-b. It is evident that the SNR gains when
deploying the ANN-based NLC are around 0.4 dB, 0.8 dB
and 1 dB for PCS 256-QAM with κ = 0, κ = 0.009 and
κ = 0.019 at the same MI of 5.5 bits/symbol, respectively.
After deploying ANN-based NLC, around 2 dB SNR gain
were experimentally achieved for PCS 256-QAM using the
two aforementioned rates. This gain is larger than that of the
64-QAM systems because it comes from both shaping and
NLC. The suitable SNR ranges associated with κ = 0.019
and κ = 0.09 for PCS 256-QAM are from ∼14 dB to ∼20 dB
and from ∼20 dB to ∼26 dB, respectively.

At the same time, Fig. 5-b also provides information of
the MI improvement when the ANN-based NLC is applied
for the three studied 256-QAM systems on the right-hand y-
axis, i.e. the different in MI between the filled-markers (with
NLC) and opened-markers (without NLC) on the left-hand y-
axis. Clearly, the MI enhancement under the same SNR is
larger for deeper shaping systems, as can be seen from the MI
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Fig. 5: Performance in terms of mutual information (MI) versus SNR of dual-
polarization (DP) 28 GBaud transmissions with and without ANN-based NLC
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and (b) PCS 256-QAM. (c) An example of constellation-diagram comparison
between with and without ANN-based NLC for PCS 256-QAM, κ = 0.019
at 25 dB SNR. wo.: without.

improvement chart. The MI enhancement is larger for shaping
systems in comparison to the uniform constellations. The
maximum enhancement when deploying the ANN-based NLC
for the uniform 256-QAM is ∼0.23 bits/symbol, whereas this
value is above 0.3 bits/symbol for PCS 256-QAM, κ = 0.019.
This chart clearly indicates that the more the shaping is, the
larger improvement gains exist for systems equipped with the
nonlinearity compensator, as shown in the star-marker curve
(κ = 0.009) versus the diamond-marker curve (κ = 0.019)
and cross-marker curve (no shaping, i.e. κ = 0) for up to
23 dB SNR. For high SNR regimes (> 24 dB SNR), however,
this trend is not accurate for deeply shaped QAM. This is
because the performance of deeper shaping system (κ = 0.019)
is approaching its entropy for relatively high SNR regimes.
The experimentally obtained results show a good agreement
with the previous conclusion that deeper shaping imposes
more nonlinear distortion from the transceivers. Fig. 5-c il-
lustrates a comparison of constellation diagrams of PCS 256-
QAM, κ = 0.019 at 25 dB SNR with and without using the
nonlinear compensation. The ANN-based NLC compensates
for transceivers nonlinear distortion which can be seen by
comparing the constellation regimes with large amplitudes on
this figure. In other words, decision boundaries especially at
high power constellation points were corrected after ANN-
based NLC. The accordingly measured bit-error-rate (BER)
before and after the NLC are 1.3× 10−2 and 5.9× 10−3,
respectively.

B. Using fiber transmission
In this section, we experimentally evaluate the performance

of the proposed NLC scheme with fiber transmission. Unlike
to the optical back-to-back configuration, the ANN training in
the fiber channel may take place multiple times at different
launched powers or just once at the optimum launched power
for each transmission distance. We thus investigate 3 different
ANN configurations: (1) the trained ANN in optical back-to-
back is also used for fiber transmissions, (2) the ANN is trained
at the optimum launched power (4 dBm - Fig. 6) and then used
for all launched powers, and (3) the ANN is re-trained at each
launched power.

Fig. 6 shows performance of DP 256-QAM different ANN
configurations after propagating through 300 km SSMF (sub-
figures a, b and c) and 500 km SSMF (sub-figures d, e and f).
For each transmission distance, three systems are considered:
κ = 0 (no shaping), κ = 0.009 and κ = 0.019. For each
system (each sub-figure), performance of four scenarios are
considered: without ANN-NLC and with ANN-NLC under
three aforementioned training strategies.

For the uniformly distributed QAM, the results on Fig. 6-a
and Fig. 6-d show clearly that there is no performance im-
provement when different training strategies are deployed for
both transmission distances under test. This means that the
nonlinear distortion comes mainly from transceivers but not
from Kerr-induced fiber nonlinearity. Although there is a
small improvement in nonlinear regime (high power) if the
ANN is trained at different launched power in comparison
with the ANN trained in the optical back-to-back, the current
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(b) κ = 0.009 after 300 km
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(c) κ = 0.019 after 300 km
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(d) κ = 0 after 500 km
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(e) κ = 0.009 after 500 km

0 1 2 3 4 5 6 7

launched power (dBm)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

M
I 
(b

it
s
/s

y
m

b
o
ls

)

wo. ANN

w. ANN - conf. 1

w. ANN - conf. 2

w. ANN - conf. 3

(f) κ = 0.019 after 500 km
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Fig. 6: Performance of the proposed ANN-based NLC for PS DP 256-QAM systems after 300 km and 500 km of fiber transmissions with different ANN
configurations. (a) uniform constellation after 300 km, (b) PCS with κ = 0.009 after 300 km, (c) PCS with κ = 0.019 after 300 km, (d) uniform constellation
after 500 km, (e) PCS with κ = 0.009 after 500 km and (f) PCS with κ = 0.019 after 500 km.
“wo. ANN”: without ANN, “w. ANN - conf. 1”: with ANN when the trained ANN in back-to-back is used for fiber transmission, “w. ANN - conf. 2”: with
ANN when the re-training is taken place once at 4 dBm and “w. ANN - conf. 3”: with ANN when the re-training is taken place at every launched power.

ANN configuration is not sufficient to deal with pure fiber
nonlinearity. In this uniform QAM transmission, the trained
ANN from the back-to-back configuration thus can be reused
in the fiber channel for dealing with transceiver nonlinearity.

In contrast, the trained ANN in the back-to-back does not
give the optimum gain for the tested PCS systems in the fiber
channel, as shown in Fig. 6-b,c,e,f. These figures show clearly
that for the PCS systems, the ANN is either trained at the
optimum launched power or trained at each launched power for
an optimum gain and they also indicate that the proposed NLC
scheme compensates at the same time transceivers and Kerr-
induced nonlinearity for PCS systems. If the ANN is re-trained
in fiber channel, at 4 dBm (optimum) launched power, MI is
improved by ∼0.3 bits/symbol and ∼0.25 bits/symbol when
deploying the proposed NLC scheme for PCS signals after
propagating through 300 km (Fig. 6-b) and 500 km (Fig. 6-d)
SSMF, respectively.

The results on Fig. 6-b,c,e,f indicates that the nonlinear
functions/boundaries found via ANN-based NLC in the optical
back-to-back is no longer close to the optimum ones under the
impact of fiber nonlinearity for PCS systems. The additional
gain, e.g. d2 in Fig. 6-b, when the ANN is re-trained in the fiber
channel depends on the shaping factor and the transmission
distance. It can also be seen that if the ANN is re-trained in

the fiber channel, the additional gain increases according to
the escalation of the shaping factor and the transmission link.
This trend can be seen when comparing the ratio of the addition
gain (d2) provided if ANN is re-trained in the fiber channel
to the gain provided if the ANN trained in the back-to-back
(d1). An example is shown in Fig. 6-b in which d2/d1 = 32 %.
The ratio d2/d1 is smallest in Fig. 6-b and largest in Fig. 6-
f. These ratios for Fig. 6-c,e,f are 42 % 53 % and 127 %,
respectively. These numbers of percentage also imply that
more gain is achieved with the proposed NLC for (1) at
same shaping factor but longer distance, i.e. more fiber-induced
nonlinearity, and (2) at same distance but higher shaping factor,
i.e. more nonlinearity due to higher PAPR. Thus, the coupled
transceivers-fiber nonlinearity can be considered as a function
of the shaping rate, transceivers’ characteristics and the fiber’s
parameters. This interplay is complicated and it results in
a considerable change of the nonlinear function/boundaries
found in the optical back-to-back where only transceivers
nonlinearity is taken into account. Therefore, the re-training is
required to cope with that interplay. For all cases, the training
at each power is not necessary to conduct as there is almost no
improvement in comparison with the case of one-time training
at the optimum launched power.
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V. CONCLUSION
We have experimentally demonstrated, for the first time,

the simultaneous ANN-based transceivers and Kerr-induced
nonlinearity compensation for PCS DP 64/256-QAM optical
systems. The effectiveness of the proposal was investigated for
both optical back-to-back and fiber transmissions. A SNR gain
of up to 1 dB improvement due to the transceiver NLC was
obtained experimentally for shaping systems equipped with our
proposed ANN-based NLC. On the other hand, a MI enhance-
ment of ∼0.25 bits/symbol was achieved experimentally with
our proposed scheme to combat with coupled transceivers-fiber
nonlinearity in a fiber channel of up to 500 km SSMF for the
tested PCS DP 256-QAM. Experimental results indicate that
transceivers re-calibration may not be needed when a certain
shaped-QAM is considered in the systems, e.g. 64 (or below)-
QAM. However, the employment of additional DSP techniques
such as the proposed NLC are necessary to compensate the
coupled transceivers-fiber nonlinear distortion if PCS high-
order QAMs is deployed, e.g. 256-QAM. For uniform 256-
QAM, the training conducted during the calibration or in the
optical back-to-back is not required to be repeated when fiber
transmission is considered. However, such training is neces-
sary for PCS signals to maximize the system performance,
especially at a medium-to-long link and/or high shaping rates.
For all cases, the re-training process with fiber transmission,
if necessary, only takes place once at the optimum launched
power when the proposed ANN-based NLC is used at the
receiver.
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